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Breaking of shoaling internal solitary waves
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The breaking of fully nonlinear internal solitary waves of depression shoaling
upon a uniformly sloping boundary in a smoothed two-layer density field was
investigated using high-resolution two-dimensional simulations. Our simulations
were limited to narrow-crested waves, which are more common than broad-crested
waves in geophysical flows. The simulations were performed for a wide range of
boundary slopes S ∈ [0.01, 0.3] and wave slopes extending the parameter range to
weaker slopes than considered in previous laboratory and numerical studies. Over
steep slopes (S � 0.1), three distinct breaking processes were observed: surging,
plunging and collapsing breakers which are associated with reflection, convective
instability and boundary-layer separation, respectively. Over mild slopes (S � 0.05),
nonlinearity varies gradually and the wave fissions into a train of waves of elevation
as it passes through the turning point where solitary waves reverse polarity. The
dynamics of each breaker type were investigated and the predominance of a particular
mechanism was associated with a relative developmental time scale. The breaking
location was modelled as a function of wave amplitude (a), characteristic wave length
and the isopycnal length along the slope. The breaker type was characterized in wave
slope (Sw = a/Lw , where Lw is a measure of half of the wavelength) versus S space,
and the reflection coefficient (R), modelled as a function of the internal Iribarren
number, was in agreement with other studies. The effects of grid resolution and wave
Reynolds number (Rew) on R, boundary-layer separation and the evolution of global
instability were studied. High Reynolds numbers (Rew ∼ 104) were found to trigger
a global instability, which modifies the breaking process relative to the lower Rew

case, but not necessarily the breaking location, and results in a ∼ 10 % increase in R,
relative to the Rew ∼ 103 case.
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1. Introduction
Internal solitary waves (ISWs) are formed via the nonlinear steepening of basin-

scale internal seiches in lakes (Horn, Imberger & Ivey 2001) and from the internal tide
generated by tide–topography interaction in oceans (Apel et al. 1985; Lamb 1994). The
breaking of ISWs upon sloping boundaries in lakes and oceans plays an important
role in controlling the stratification and vertical distribution of biogeochemical matters
in the water column (Ledwell & Hickey 1995; Wüest, Piepke & Van Senden 2000) as
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well as the dissipation of internal wave energy (Imberger 1998; Michallet & Ivey 1999;
Boegman, Ivey & Imberger 2005). Field experiments in lakes have shown that the
dissipation and diapycnal diffusivity in the turbulent benthic boundary layer (TBBL),
where internal solitary waves break, are an order of magnitude greater than in the
lake interior (Imberger 1998; Wüest et al. 2000). Laboratory experiments have shown
that as much as 25 % of the basin-scale seiche energy is transferred to an ISW packet
(Boegman et al. 2005), which in turn can lose up to 90 % of its energy to mixing and
dissipation via breaking upon a sloping boundary (Helfrich 1992; Michallet & Ivey
1999). Shoaling of ISWs over sloping regions can also lead to sediment resuspension
due to vortex formation at the toe of the wave (Hosegood, Bonnin & van Haren 2004;
Bogucki, Redekopp & Barth 2005; Boegman & Ivey 2009). Nutrient-rich suspended
sediments will subsequently intrude towards the lake interior (Thorpe 1998; Marti &
Imberger 2004).

Field experiments on ISW breaking have been limited due to difficulties in predicting
the breaking location and obtaining high spatial and temporal resolution data (e.g.
Moum et al. 2003; Orr & Mignerey 2003). Consequently, laboratory experiments
(e.g. Kao, Pan & Renouard 1985; Helfrich 1992; Michallet & Ivey 1999; Boegman
et al. 2005) and numerical simulations (e.g. Lamb 2002; Vlasenko & Hutter 2002;
Bourgault et al. 2007; Lamb & Nguyen 2009) have been extensively performed
to study the shoaling mechanisms of internal solitary waves. In these studies, two
particular shoaling mechanisms have been observed. Over mild slopes, fission occurs
after the polarity reversal at the turning point and there is little reflection (e.g. Helfrich,
Melville & Miles 1984; Orr & Mignerey 2003; Shroyer, Moum & Nash 2009). Over
steep slopes, wave breaking occurs where some wave energy is irreversibly lost to
dissipation and diapycnal mixing, while the remainder is reflected from the slope
(e.g. Michallet & Ivey 1999; Boegman et al. 2005; Bourgault & Kelley 2007). Wave
breaking has been observed to occur through shear instability (e.g. Kelvin–Helmhotz
instability; Kao et al. 1985; Moum et al. 2003; Boegman et al. 2005) and Rayleigh–
Taylor gravitational instability (Helfrich & Melville 1986; Michallet & Ivey 1999;
Vlasenko & Hutter 2002).

The ISW breaking mechanism has been further classified by analogy to surface
breakers according to an internal form of the Iribarren number

ξin =
S√

a/Lw

, (1.1)

where S, a and Lw represent boundary slope, wave amplitude (taken positive for
waves of depression) and wavelength, respectively (Boegman et al. 2005). The internal
Iribarren number could delineate spilling, plunging and collapsing breakers in the
laboratory experiments of Boegman et al. (2005); however, their experiments were
limited to a small range of steep boundary slopes (0.1–0.15) permissible with their
experimental set-up. These are much steeper than those found in lakes (0.01) and
coastal oceans (0.001); thus, they were not able to observe the fission process.

In those experiments, the breaking mechanism was influenced by the space–time
variable background flow resulting from basin-scale seiche oscillations. In lakes and
oceans the ratio of the horizontal to vertical length scales is much larger than that in
the laboratory, which causes the period of basin-scale motions to be 100–1000 times
greater than the time scale associated with ISW shoaling (Imberger 1998). Basin-scale
motions will be frozen in time during ISW shoaling and can consequently be neglected
when considering ISW shoaling (e.g. Helfrich 1992; Michallet & Ivey 1999).
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Field observations suggest that resuspension related to shoaling of ISWs is due
to flow separation beneath the ISWs (e.g. Bogucki et al. 2005). This process has
been well studied numerically and experimentally for the case of ISW travelling
over a flat bottom (e.g. Bogucki & Redekopp 1999; Diamessis & Redekopp 2006;
Carr, Davies & Shivaram 2008; Stastna & Lamb 2008) where flow separation has
been found to be dependent upon the Reynolds number (Re = Hc0/ν; Diamessis &
Redekopp 2006). Here H, c0 and ν represent total depth, linear phase speed and
fluid viscosity, respectively. Process-oriented studies on resuspension and separation
on sloping topography have been limited (Boegman & Ivey 2009) and Re effects have
not been investigated.

The reflection coefficient (R) is often employed to determine energy loss in the
littoral zone from offshore observations (e.g. Michallet & Ivey 1999; Boegman
et al. 2005). However, parameterizations for R are not in agreement (Helfrich 1992;
Michallet & Ivey 1999). This may be because of sidewall effects in the laboratory
(Bourgault & Kelley 2007) or because they assume an equipartition between the
potential and kinetic energies of the wave or an equipartition of their fluxes. Lamb &
Nguyen (2009) showed that equipartition is only reasonable for weakly nonlinear
waves and that for highly nonlinear waves there may be up to 30 % more kinetic
energy than potential energy in the wave. Moreover, the potential energy flux can
be up to five times the kinetic energy flux. There is a need to recalculate the
parameterizations for R without assuming an energy/energy flux equipartition.

In the present study, we extend the work described above by performing high-
resolution two-dimensional simulations of ISWs of depression shoaling upon closed
slopes in a smoothed two-layer density field. The objectives of our study are as
follows. To investigate the validity of the Iribarren model for internal wave breaking
over a greater range of wave and boundary slopes in a quiescent ambient flow, to
determine the effects of Re on wave breaking and flow separation and to test the
parameterizations for R by directly calculating the kinetic and potential energy fluxes.
In § 2 we present the relevant theoretical background. We introduce the numerical
model and methodology in § 3. The results and their physical interpretation are given
in § 4. The breaking criteria, breaking location, effects of Re and models for R are
discussed in § 5, followed by concluding remarks in § 6.

2. Theoretical background
Stratified lakes and oceans with a thin pycnocline relative to the total depth H may

be approximated as a two-layer system of depth h1 and density ρ1 overlaying depth
h2 and density ρ2 where H = h1 + h2 (figure 1). The generation and propagation of
ISWs in this two-layer system can be theoretically analysed using the Korteweg–de
Vries (KdV) equation (Osborne & Burch 1980; Apel 2002):

ηt + c0ηx + αηηx + βηxxx = 0, (2.1)

α =
3c0

2

h1 − h2

h1h2

β =
c0

6
h1h2, (2.2)

which is derived by applying first-order perturbation techniques on the hydrodynamic
equations for an inviscid fluid under the Boussinesq approximation. Here η is the
vertical displacement of the pycnocline. The KdV equation models weakly nonlinear,
weakly dispersive waves which, for the case of internal waves in a two-layer fluid, has
nonlinearity and dispersion coefficients (α and β respectively) in the form of (2.2).
Here c0 =

√
g′h1h2/(h1 + h2) is the linear long-wave speed where under the Boussinesq
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Figure 1. Schematic picture of numerical simulations. Here H is the total depth where fluid
of density ρ1 and depth h1 overlies fluid of density ρ2 and depth h2. An internal solitary wave
of amplitude a and length 2Lw moves towards the boundary that has slope S. The interface
length above the slope is Li , and Ls is the horizontal length of the slope.

approximation, g′ = g(ρ2 − ρ1)/ρ2 is the reduced gravity due to stratification. The
horizontal length scale of a KdV solitary wave can be expressed as

λ =

√
12β

|α| a . (2.3)

The third term of (2.1) is the nonlinear term responsible for nonlinear steepening,
which for a solitary wave is balanced by the fourth term, the dispersive term. To unify
the effects of both finite wave amplitude and asymmetry of the layer thicknesses on
ISW nonlinearity, Boegman et al. (2005) proposed the non-dimensional nonlinearity
parameter

γ =
|α| a
c0

=
3

2
a

|h1 − h2|
h1h2

. (2.4)

In geophysical flows, typically h1 <h2 causing α to be negative and leading to
the generation of ISWs of depression (figure 1). During the passage of a wave of
depression, fluid particles in the upper and lower layers will move in the same and
opposite direction to wave propagation, respectively.

By keeping only first-order nonlinear terms in its derivation, the KdV equation is
only valid when the wave amplitude is much smaller than (h2 − h1)/2 (Lamb & Wan
1998). Solitary wave solutions of the KdV equation are unbounded in amplitude and
the wavelength decreases with amplitude. Numerical solutions of the fully nonlinear
equations under the Boussinesq approximation show that solitary wave amplitudes
are bounded by amax =(h2 − h1)/2 for a two-layer fluid (Lamb & Wan 1998). This
indicates that broadening starts when the interface approaches the mid-depth of the
water column.

The nonlinearity parameter γ captures the effects of the two nonlinear length
scales h1/H and a/h1 defined by Horn et al. (2001). The above-mentioned maximum
amplitude criterion may be presented in terms of these length scales as

a

h1

<
0.5(
h1

H

) − 1 (2.5)

to determine the geophysical parameter range over which narrow-crested and broad-
crested waves are expected. The curved line in figure 2 demonstrates (2.5), where the
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Figure 2. Nonlinearity parameter (γ ) shaded in greyscale as a function of h1/H and a/h1.
The area above the curved line represents broad-crested waves while narrow-crested waves lie
below it. Capital letters (A to J) represent the waves generated in our simulations with details
in table 1. Numbers show the waves observed in field studies: 1, Lake Biwa; 2, Lake Pusiano;
3, Loch Ness; 4 and 5, Babine Lake; 6, Seneca Lake; 7, Kootenay Lake; 8, Sulu Sea; 9, Scotian
Shelf; 10, Massachusetts Bay; 11, Strait of Gibraltar; 12, Bodensee; 13, Oregon shelf; 14, St
Lawrence; 15 and 16, Lake Kinneret (data taken from Boegman et al. 2005).

waves above this line have amplitudes larger than (h2 − h1)/2 thus have broad crests.
Sixteen waves from the literature with sufficient data are plotted in figure 2. The
majority of these waves, from both lakes and oceans, have narrow crests. However,
this is a tiny fraction of the reported 3581 internal solitary waves observed in the world
oceans over a 21 month period (Jackson 2007). It should be noted that in the field
there may be background currents which modifies maximum wave amplitude. For
example, the Scotian shelf case (wave number 9) could possibly be below the curved
line if background currents were taken into account. The nonlinearity parameter γ

may also be expressed as an explicit function of h1/H and a/h1

γ =
3

2

a

h1

∣∣∣∣1 − 2
h1

H

∣∣∣∣
1 − h1

H

(2.6)

showing how γ captures the degree of nonlinearity throughout the h1/H versus a/h1

domain. Figure 2 where 7 is shown in the shaded region indicates that we may
investigate narrow-crest ISWs of depression over the range 0.1 <γ < 3 to sufficiently
cover what is found in nature.
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3. Numerical model and experimental parameters
The simulations were performed using a two-dimensional nonlinear non-hydrostatic

computational fluid dynamics model (Lamb & Nguyen 2009). The model solves the
Navier–Stokes equations for a Newtonian fluid with the Boussinesq approximation

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ0

∂P

∂x
+ ν∇2u, (3.1)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρ0

∂P

∂z
− ρg

ρ0

+ ν∇2w, (3.2)

∂ρ

∂t
+ u

∂ρ

∂x
+ +w

∂ρ

∂z
= k∇2ρ, (3.3)

∂u

∂x
+

∂w

∂z
= 0, (3.4)

where (x, z) are the horizontal and vertical coordinates and (u, w) is the associated
velocity vector, P and ρ are the pressure and density fields, respectively, ρ0 is
the reference density, ν is the kinematic viscosity and k is molecular diffusivity. A
σ -coordinate system is applied allowing for greater vertical resolution over the slope
where the depth decreases. A no-slip boundary condition is applied along the bottom
and two end walls and a free-slip condition is applied at the rigid lid (Lamb &
Nguyen 2009). A no-flux boundary condition has been employed for the density field
on all boundaries. The vertical variation in density is given by a tanh profile

ρ̄(z) =
ρ1 + ρ2

2
− ρ2 − ρ1

2
tanh

(
z − zpyc

dpyc

)
, (3.5)

which approximates a two-layer stratification in the laboratory (Boegman & Ivey
2009). Here the vertical coordinate z varies between zero at the surface to −H at the
flat bottom, zpyc is the location of the centre of the pycnocline and dpyc is a measure
of half the pycnocline thickness.

There are limitations in modelling a three-dimensional wave-breaking process using
a two-dimensional numerical model. Fringer & Street (2003) and Venayagamoorthy &
Fringer (2007) showed that three-dimensionality is not evident until after the cross-
stream rolls develop as a result of an initial two-dimensional instability. Our two-
dimensional model is incapable of reproducing the secondary instabilities, which
account for a significant portion of the dissipation in three-dimensional computations
(Fringer & Street 2003) and we therefore expect our numerical solution to be
physically realistic during only the initial two-dimensional stages of wave instability
and breaking (Boegman & Ivey 2009). Mixing and dissipation, which occur primarily
during the later stages of breaking, will not be correctly modelled (Lamb, Boegman &
Ivey 2005) and consequently these processes are not the focus of this study.

The model is initialized by first solving the Dubreil–Jacotin–Long (DJL) equation
derived in terms of streamline displacement (Lamb 2002; (6) therein). For a specified
available potential energy, the DJL equation is solved by minimizing the kinetic
energy. This generates an incident ISW which propagates along the flat bottom until
it shoals upon the sloping boundary at the end of the calculation domain (figure 1).
Away from the slope, the horizontal and vertical grid resolutions are 2.5 mm and
1 mm, respectively. At these resolutions the simulations were grid-independent. The
diffusivity was 10−9 m2 s−1. To match conditions from prior laboratory experiments
(e.g. Michallet & Ivey 1999) the total depth for all simulations was set to H = 0.15 m.
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Boundary slope

0.01 0.03 0.05 0.1 0.15 0.2 0.3
Wave h1 (m) a (m) Lw (m) 2a

h2−h1
γ dpyc (m) Simulation number and (type of shoaling process)

A 0.06 0.012 0.96 0.78 0.10 0.0015 11(F) 22(F) 32(F) 1(S) 62(S) 42(S) 52(S)

B 0.05 0.013 0.65 0.53 0.20 0.0015 12(F) 23(F) 33(F) 2(CS) 63(S) 43(S) 53(S)

C 0.04 0.013 0.45 0.37 0.31 0.0015 13(F) 24(F) 34(F) 3(C) 64(CS) 44(CS) 54(S)

D 0.04 0.016 0.46 0.47 0.39 0.0015 14(F) 25(F) 35(F) 4(C) 65(C) 45(CP) 55(S)

E 0.03 0.017 0.32 0.38 0.63 0.0015 15(F) 26(F) 36(F) 5(C) 66(C) 46(CP) 56(CP)

F 0.02 0.013 0.23 0.24 0.83 0.0015 16(F) 27(F) 37(F) 6(C) 67(C) 47(CP) 57(CP)

G 0.02 0.016 0.22 0.29 1.02 0.0015 17(F) 28(F) 38(F) 7(C) 68(CP) 48(CP) 58(CP)

H 0.02 0.024 0.22 0.44 1.52 0.0015 18(F) 29(F) 39(C) 8(C) 69(CP) 49(P) 59(P)

I 0.02 0.033 0.22 0.60 2.09 0.0025 19(F) 30(C) 40(C) 9(C) 70(P) 50(P) 60(P)

J 0.02 0.041 0.22 0.75 2.60 0.003 20(F) 31(C) 41(C) 10(C) 71(P) 51(P) 61(P)

Table 1. Main parameters of performed numerical simulations. The letters in front of
simulation numbers represent the shoaling type: F for fission, C for collapsing, S for surging
and P for plunging. The wave slope Sw = a/Lw , where Lw is a measure of half of the wavelength.

Ten waves were generated with amplitudes between 0.01 and 0.04 m to cover the
range 0.1 <γ < 3 (table 1). For all simulations, ρ1 and ρ2 were set to 1000 and
1040 kg m−3, respectively. The typical maximum density difference observed over
the pycnocline in stratified lakes and oceans is ∼ 1 kg m−3 (e.g. Boegman et al.
2003; Orr & Mignerey 2003). This implies that we are simulating faster propagating
waves than would be the case using density values observed in lakes/oceans. This will
partially compensate for reducing the Reynolds number by decreasing the physical
scale; however, using a density difference 40 times larger than that in lakes and
oceans produces a Reynolds number that is equivalent to increasing the water depth
by a factor of

3
√

40 ≈ 3.4 to a depth of 50 cm so the compensation is extremely
small. Moreover, considering density ratios between 1.01 and 1.04, Michallet & Ivey
(1999) showed that the breaking characteristics (reflection and mixing efficiency)
are insensitive to density difference (their figures 9 and 10). The simulations were
performed over a range of slopes from mild (0.01) to steep (0.3) to allow for both
fission and convective breaking. The mild slopes are of the same order as those found
in lakes, but are greater than coastal ocean slopes. Simulation of oceanic slopes would
require prohibitively large computational domains. We have observed that slopes of
∼ 0.01 are sufficient to model fission for the range of wave amplitudes considered in
this study. The experimental variables considered in this study are given in table 1.

To calculate the Iribarren number, the wavelength is determined through integration
of the wave profile (Michallet & Ivey 1999)

Lw =
1

a

∫ +∞

−∞
η (x) dx, (3.6)

where η(x) is the vertical displacement, positive downwards, of the isopycnal at the
centre of the pycnocline. Our observations show that the actual wavelength is L ≈ 2Lw

(see figure 1). Thus, we define the wave slope Sw = a/Lw , which increases linearly with
γ (figure 3) for the simulated narrow-crested ISWs. In addition, the maximum internal
wave Froude number (Frmax = umax/c0; Fringer & Street 2003) was seen to increase
with γ (figure 3). Here umax is the maximum flow speed within the wave. In our
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Figure 3. Wave front slope (Sw) and the maximum Froude number within the wave (Frmax ),
versus nonlinearity parameter (γ ) for waves in the simulations.

simulations different wave and boundary slopes will interact with each other, thus
varying the internal Iribarren number.

4. Results
4.1. Flow field

A typical wave shoaling event proceeds as follows. As the wave of depression shoals,
the volume of lower layer fluid confined between the leading edge of the wave and the
sloping boundary is reduced as the leading face of the wave becomes parallel to the
slope. In this region, down-slope velocities are increased due to the fluid escaping
beneath the wave trough. The associated lengthening of the leading face and large
velocities underneath it generate shear across the interface, leading to the possibility of
shear instabilities as have been observed in laboratory experiments (Kao et al. 1985;
Boegman et al. 2005). Shear instabilities were not observed in the present simulations.

The rear face of the wave steepens because the rear shoulder of the wave is in
deeper water relative to the wave trough and hence propagates faster. Steepening of
the rear face acts to move the location of maximum horizontal velocity from the
wave centre to the rear shoulder (figure 4), which can lead to overturning. For some
simulations there was an upward motion of the rear face associated with shoaling in
addition to the forward steepening. The upward motion forms a positive tail behind
the rear face, which gradually increases in amplitude and becomes narrower causing
a reversal in the flow direction within the upper layer from onshore to offshore. The
positive tail formation can be attributed to the effect of slowly varying nonlinearity
(Grimshaw, Pelinovsky & Talipova 1998) and is the main mechanism leading to the
fission process. As the nonlinearity varies along the slope, decreasing Lw/Li (Li is the
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∼ 0.35Li). The hollow symbols represent simulations in which positive tail formation

occurred.

pycnocline length above the slope; figure 1) leads to more slowly varying nonlinearity.
Our data show that positive tail formation occurs when Lw < ∼0.35Li (figure 5).

Separation of the down-slope flow was also observed beneath the shoaling wave.
Flow separation occurs in the adverse pressure-gradient region where the flow
decelerates after passing beneath the wave trough.

To characterize the different breaking mechanisms, three time scales were measured
after the leading edge of the wave reached the toe of the slope. Surging breakers are
governed by the time scale for the lower layer fluid to escape beneath the shoaling
wave (Te), plunging breakers are governed by the time scale for the rear face to steepen
to the vertical position (Ts) at the threshold of onshore overturning (Rayleigh–Taylor
instability) and collapsing breakers are governed by the time scale for the separation
bubble to form and reach the pycnocline leading to instability (Tb). These time
scales were evaluated manually through flow visualizations. The predominance of a
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Figure 6. Different shoaling mechanism regimes according to the wave slope (Sw) and the
boundary slope (S). Numbers beside stars and circles denote Te/Tb and Ts/Tb, respectively.

particular breaking mechanism results from the relative time scales associated with
their evolution. This is discussed below.

4.2. Breaker types and their characteristics

Four different degeneration mechanisms were observed in the simulations. These
include three types of convective breakers (collapsing, plunging and surging) as well
as fission. The mechanisms may be classified as a function of the wave and boundary
slopes (figure 6). Spilling breakers, as observed by Boegman et al. (2005), were not
found in the present simulations.

4.2.1. Collapsing breakers

Boundary-layer separation is the dominant mechanism leading to collapsing
breakers (figure 7). The separated down-slope flow diverted by the separation bubble
pushes the rear face of the wave down slope such that the wave collapses back
upon itself as it shoals (figures 7c and 7d ). This mechanism occurs before the
lower layer fluid is discharged completely beneath the wave and prevents the rear
face from steepening enough to be able to plunge forward. Collapsing breakers
occurred for moderate wave slopes (0.03 <Sw < 0.1) over steep boundary slopes
(S > 0.1) as well as steep waves (Sw > 0.1) over mild and moderate boundary slopes
(0.03 <S < 0.1) (figure 6). The separation bubble eventually broke down into smaller
vortices (figure 7e). This patch of vortices contained a mixing region which was
pushed upslope by the inertia of the wave (figure 7f ).

For steep waves over moderate and mild slopes, a positive tail started to form before
wave breaking (figures 7b and 7c). The offshore directed upper layer horizontal
velocity forced the crest of the positive tail down slope (figure 7d ) favouring the
collapsing breaker. Due to the shear increase at the crest of the positive tail, shear
instabilities were possible and have been observed during breaking in the laboratory
(Kao et al. 1985; Boegman et al. 2005; Hult, Troy & Koseff 2009). Local gradient
Richardson numbers (Ri = N2/(du/dz)2) less than 0.25 were simulated near the
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Figure 7. Successive images of a collapsing breaker (simulation 9). Solid lines are density
contours and the dotted lines are streamlines. Instantaneous velocity field is shown by velocity
vectors. For this simulation, linear phase speed is c0 = 0.081 m s−1. Figures (a) to (f ) correspond
to tc0/H = 14, 16.7, 17.8, 18.4, 19.4 and 21.1, respectively.

pycnocline during breaking (figure 8; corresponding to figure 7d ); however, shear
instabilities were not evident during the simulations. The structure of the unstable
region at the positive tail crest resembles the convective instability shown by Fringer &
Street (2003; their figure 13). Here Ri < 0.25 is a necessary, but not sufficient, condition
for shear instabilities, and their absence during the numerical simulations may result
from (i) the growth periods being longer than the period of low Ri (Boegman
et al. 2003; Troy & Koseff 2005; Fructus et al. 2009), (ii) the lack of infinitesimal
perturbations within the numerical simulations from which instabilities will grow,
and/or (iii) the possibility that shear instabilities are secondary three-dimensional
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show isopycnals. Note the occurrence of convective instability rather than Kelvin–Helmhotz
instability at the crest of the positive tail at (0.72, −0.015), where the pycnocline is being
pushed offshore by the horizontal velocity field.

instabilities (Smyth & Peltier 1990; Fringer & Street 2003). The inability to model
three-dimensional effects as the flow becomes turbulent is also evident in two-
dimensional simulations of global instability (Carr et al. 2008).

4.2.2. Plunging breakers

The steepening of the rear face is the dominant process for plunging breakers
(figure 9), where the rear face steepens (figures 9b and 9c) until it overturns in
the onshore direction (figure 9d ). Steep waves (Sw > 0.1) are more susceptible to
overturning, especially over steep slopes (S > 0.1) where there is a sudden depth
variation as the wave shoals. Hence, plunging breakers lie in the region of steep wave
and boundary slopes (figure 6) where S � 0.022/Sw .

Despite the occurrence of boundary-layer separation beneath the wave, the rear face
overturns forward before the flow induced by the separation bubble is able to modify
the breaker type (Ts (figure 9c) <Tb (figure 9e)). This forms the anvil structure of a
Rayleigh–Taylor instability where the denser lower layer fluid accelerates into the less
dense upper layer fluid (figure 9e). Mixed mode breakers were also simulated, where
the boundary-layer separation dominates the breaking process just prior to plunging
forward. These cases are considered as transitional breakers between collapsing and
plunging which are shown by letters CP in table 1 (Tb ≈ Ts). As with collapsing
breakers, plunging breakers caused a significant amount of mixing during breaking.
After the lower layer fluid was drawn out from beneath the wave, a mixing region
comprised of vortices emanating from the plunging anvil was pushed upslope while
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Figure 9. Same as figure 7 except for a plunging breaker (simulation 60). For this simulation,
linear phase speed is c0 = 0.081 m s−1. Figures (a) to (f ) correspond to tc0/H =7.9, 8.7, 9,
9.2, 9.5 and 10.8, respectively.

the leading face was reflected (figure 9f ). A mixed region followed the reflected wave
offshore as an intrusion within the pycnocline.

By analogy to surface breakers, plunging breakers have been conceptualized to occur
when the horizontal velocity of the wave crest (u; here the horizontal velocity at the
rear shoulder of the wave) exceeds a multiple of the linear deep water phase speed
(c0) (e.g. Peregrine 1983). Laboratory experiments (Sveen et al. 2002; Boegman & Ivey
2009) show plunging ISW breaking to occur when u ∼ 0.7c0. This is in good agreement
with the present study where plunging occurs over 0.55 <u/c0 < 0.9 (figure 10). Over
a given slope the more nonlinear (steeper) wave reaches a greater value of u/c0 and
a/Hs (Hs is local total depth) at the threshold of overturning. Conversely, the value
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at the threshold of overturning versus the ratio of offshore wave amplitude over total depth
at the threshold of overturning (Hs). The values of u/c0 > 0.55 identify plunging breakers.

of u/c0 at the threshold of breaking decreases for a given wave as the boundary slope
increases.

Our results demonstrate that at the locations at which waves overturn the ratio
of offshore wave amplitude (a) to local total water depth (Hs) is greater for steeper
waves than for milder waves. Also, a given wave overturns in a relatively deeper
water column as we increase the boundary slope. This is because over a gentler slope
shoaling waves have more time to adjust to their changing environment. Therefore,
a/Hs represents the contribution of steepening in the breaking process and for
plunging breakers a/Hs > 0.33 (figure 10).

4.2.3. Surging breakers

For surging breakers, the wave trough reaches the sloping boundary before
steepening and/or boundary-layer separation become significant (figure 11d ; Te).
The pressure gradient and wave inertia cause the rear wave face to surge upslope
while the leading face reflects from the boundary. This changes the flow direction to
on-slope in the lower layer and off-slope in the upper layer (figure 11e). A separation
bubble forms beneath the surging wave (figure 11d) and is pushed onshore by the
flow to reach to the pycnocline (figure 11e; Tb), but occurs late in the shoaling process
and at a negligible scale to influence the breaker type (Tb > Te). Most of the wave
energy is reflected with minimal mixing at the breaking location.

Surging breakers were observed when the wave slope was much smaller than the
boundary slope. Since the wave slope was small, the deceleration beneath the rear
face was weak and growth of a separation bubble was slow. Moreover, a mild-slope
wave takes longer to steepen effectively and overturn. Given these constraints, surging
breakers were found to occur where S � 7Sw (figure 6). In some simulations mixed
mode collapsing and surging breakers would occur and the separation bubble would
detach from the collapsing rear face, surging up the slope; in this situation, Tb ≈ Te

(CS in table 1). However, the dominant process is boundary-layer separation, thus
they have been classified as collapsing breakers in figure 6.
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Figure 11. Same as figure 7 except for a surging breaker (simulation 55). For this simulation,
linear phase speed is c0 = 0.105 m s−1. Figures (a) to (f ) correspond to tc0/H = 8.4, 9.8,
10.5, 11.2, 11.9 and 13.3, respectively.

The surging process plays an important role after breaking, in all breaker types, by
pushing the mixed region onshore, which in turn can transport suspended sediments
upslope (Boegman & Ivey 2009). After breaking occurs, turbulent boluses (cores of
mixed fluid; Helfrich 1992) form close to the surging region (figure 12) following
the initial separation bubble. The down-slope flow of the lower layer fluid behind
a moving bolus interacts with the upslope surge leading to the generation of the
next bolus. Following Helfrich (1992) we found that the number of boluses decreases
with λ/Li (figure 13); however, Helfrich observed more boluses for a given λ/Li . The
boluses propagate upslope until they ultimately degenerate through three-dimensional
instability (Venayagamoorthy & Fringer 2007).

Following Helfrich (1992), we plot Db/a versus λ/Li (figure 14). Here Db is the
thickness of the first bolus which is also the thickness of the separation vortex formed
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Figure 13. Number of boluses versus (λ/Li) following Helfrich (1992). 2D, two-dimensional.

via boundary-layer separation. Our data are consistent with Helfrich’s results showing
Db/a = 1.75 ± 0.25 over 0 < λ/Li < 0.25. However, we find that Db/a decreases with
increasing λ/Li over the wider parameter range considered in this study. Helfrich
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Figure 15. Separated region thickness over total depth (Db/Hb) at the breaking point as a
function of the boundary slope to wave slope ratio (S/Sw).

(1992) only considered a narrow range of mild slopes (0.034 <S < 0.067), and so the
difference in figure 14 is to be expected. This is because a greater value of λ/Li in
general corresponds to a milder wave slope relative to the boundary slope leading to
more effective surging where the flow separation is relatively weak.

To differentiate surging from collapsing breakers, Db was compared to the total
depth at the location where separation vortex has reached the pycnocline (Hb). Pure
surging breakers lie in the region Db < 0.2Hb (figure 15). Here Db/Hb can be modelled
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Figure 16. Same as figure 7 except for a fissioning wave (simulation 25). For this simulation,
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as a function of S and Sw , which are external to the breaking process

Db

Hb

= −0.186 ln
S

Sw

+ 0.6 (4.1)

and may be interpreted as the thickness of the initial sediment re-suspending core
that moves onshore (e.g. Boegman & Ivey 2009).

4.2.4. Fission

Over gentle slopes an incident wave of depression will degenerate through fission,
forming a packet of waves of elevation as it passes through the turning point where
h1 = h2 (figure 16). This shoaling process occurs very gradually over longer time scales



Breaking of shoaling internal solitary waves 307

than the wave-breaking processes described above. The slow steepening of the rear
face of the wave occurs because the water depth is changing slowly and hence, in the
context of the KdV equation, the nonlinear and dispersive parameters are varying
slowly. Thus, the steepening is insufficient to cause overturning. The adverse pressure
gradient beneath the rear face leading to the generation of a separation bubble also
grows gradually; thus collapsing does not rapidly occur. In figure 6 the region where
S < − 0.5Sw + 0.1 corresponds to fission.

The fission process can be understood by looking at the variation of the quadratic
nonlinearity coefficient α along the slope. Over a uniform slope α varies gradually
before approaching zero at the turning point and rapidly increasing thereafter (Zhao
et al. 2003; their figure 4). The dispersion coefficient in the KdV equation decreases
gradually as well. These variations (together with variations of higher-order nonlinear
and dispersive parameters) result in the transformation of the incident ISW of
depression to a packet of waves of elevation.

This transformation occurs as the positive tail forms behind the wave and locally
moves the interface upward (figure 16a). An offshore horizontal flow in the upper layer
and an onshore horizontal flow in the lower layer is generated (figure 16a and § 4.1).
These dynamics transform the wave polarity as it moves onshore (figure 16b). The
wave of elevation is formed in a region of positive polarity (positive nonlinear coeffi-
cient in the KdV equation) and it is followed by a step-like structure, which again trans-
forms to another ISW of elevation (figure 16c). This process continues and a packet
of waves of elevation moves onshore along the tilted front face of the initial wave.
Although the positive tail also forms over steep slopes, other mechanisms (boundary-
layer separation or overturning) occur over shorter time scales, leading to wave break-
ing before fission into a packet of waves of elevation. The fission process did not give
rise to significant turbulent diapycnal mixing or reflection. Most of the wave energy
was lost to viscous damping (dissipation). However, our two-dimensional simulations
do not necessarily correctly partition irreversible energy losses to diapycnal mixing
and dissipation (Lamb et al. 2005). The fission mechanism associated with emerging
ISWs is distinct from that associated with turbulent boluses, where wave inertia
pushes a mixed breaking region shoreward. ISWs of elevation with trapped cores,
similar to figure 12, have been observed in the ocean (e.g. Klymak & Moum 2003).

Shroyer et al. (2009) investigated the fission process by calculating the vorticity field
and variations of α as ISWs shoal upon the New Jersey coast. They showed that a
sign change of α correlates well with the vorticity sign reversal at the trough of the
ISW, which implies that the fission process is occurring. We have simulated fission
processes occurring before and after the turning point location. The discrepancy is
likely due to the uncertainty in identifying the location of the turning point in field
observations and the necessity of Shroyer et al. (2009) to adjust the vorticity reversal
point to account for background shear. The fission process has also been shown in
theoretical and numerical studies to occur from a gradual change in the sign of the
quadratic nonlinearity coefficient in the KdV equation (e.g. Talipova, Pelinovskii &
Grimshaw 1997; Grimshaw et al. 1998) with fission occurring when the time scale of
nonlinearity change is longer than the waveperiod (T = Lw/c). To analyse the fission
process quantitatively, we compared Lw and Li (figure 1). For smaller values of Lw/Li ,
fission is more likely because for a given wave, by decreasing the boundary slope the
wave has more time to adjust to the changing water depth, in agreement with the
results of others (e.g. Grimshaw et al. 1998). Conversely, in some of our simulations
over gentle slopes, we observed that the fission process occurs for waves with greater
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Figure 17. Type of breaking as a function of internal Iribarren number. Experimental
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Lw and by decreasing Lw the shoaling process tends towards a collapsing breaker
(simulations 22–31 and 32–41; table 1). This means that in some of our simulations,
for a greater value of Lw/Li , fission is more probable (figure 5), which is in contrast
with previous studies.

The differences between our results and those of Talipova et al. (1997) and
Grimshaw et al. (1998) may be because their analytical studies do not capture
as much physics as the present fully nonlinear simulations. In the analytical study by
Grimshaw et al. (1998), only the quadratic nonlinearity coefficient was varied and all
other coefficients were held constant. Another parameter that contributes to fission
is the initial nonlinearity of the wave which was not considered by Grimshaw et al.
(1998). There is a stronger adverse pressure gradient beneath a more nonlinear wave
which can grow quickly enough to cause collapsing instead of fission, no matter how
small Lw/Li is.

5. Discussion
5.1. Breaking criteria

Our simulations show that for moderately steep boundary slopes (S � 0.1), the
breaking mechanism trends from surging to collapsing then plunging with increasing
wave slope. On the other hand, if the slope is mild (S � 0.05) the shoaling mechanism
trends from fission to collapsing with increasing wave slope (figure 6). These
results suggest that the breaking mechanism may be modelled in a deterministic
manner.

Boegman et al. (2005) proposed that ISW breaking could be modelled according
to an internal form of the Iribarren number (1.1), which is universally applied to
model surface breaker types. The results from the present study and the laboratory
results given in Boegman et al. (2005) are directly compared using ξin to model the
ISW breaking mechanism (figure 17). Their data cover a narrow range of boundary
slopes (0.1–0.15) and show the same trend from plunging to collapsing with increase
of the Iribarren number. However, for a given S they observed plunging breakers
for larger ξin (smaller Sw) compared to our data. This is likely due to the shoaling
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ISWs in Boegman et al. (2005) being carried on a background basin-scale seiche and
nonlinear surge oscillations from which the ISWs evolved during the course of the
experiments. The background flow increases upper and lower layer velocities above
and beneath the wave respectively favouring the forward overturning (Boegman et al.
2005; their figures 8 and 9).

Mixed mode breaking, with a contribution from shear instabilities was observed in
the experiments by Boegman et al. (2005), but did not occur in the present simulations.
Boegman et al. (2005) observed shear instabilities where shoaling ISWs of elevation
had passed through the turning point and the wave crests approached the surface
boundary of their flume. The shear at the wave crests was increased due to the
no-slip surface boundary necessitating larger mid-layer velocities in order to maintain
conservation of volume. The wave crests were sheared off as they propagated upslope.
These were erroneously labelled spilling breakers by Boegman et al. (2005). Shear
instabilities similar to their spilling breakers were observed at the crests of boluses in
some of our simulations; however, our simulations did not employ a no-slip surface
boundary.

Boegman et al. (2005) also observed mixed mode breaking with shear instabilities
when the space-time-varying background flow field induced by the baroclinic seiche
was strong. Our simulations did not include seiche dynamics, and so this breaking
mechanism was not expected. The space-time-varying background flow field and
along-slope advection of the pycnocline-slope interface would greatly influence the
breaker type for a particular Iribarren number relative to the quiescent background
flow considered in the present study. More laboratory experiments are required to
validate the numerical results presented herein.

Our results differ from those of Fringer & Street (2003), who found the breaking
mechanism (shear/convective) to depend on the wave steepness and pycnocline
thickness. We attribute the difference to the presence of a sloping bottom boundary
in the present study; the breaker type depends on the influence of both the wave and
boundary parameters in regulating convection, flow separation and fission processes
(S versus Sw domain; figure 6). Sensitivity to dpyc was not part of the present study.
However, doubling dpyc in simulations 1-10 did not change the breaker type. This is
not unexpected; our modelled wave-slope collision breakers are convective, whereas
those away from slopes are susceptible to shear instability and hence more sensitive
to interfacial thickness (Fringer & Street 2003).

5.2. Breaking location

The breaking location is a localized region where dissipation, mixing and resuspension
are elevated relative to background values. It is of physical and biogeochemical
importance to develop parameterizations to predict the breaker location, which will
aid in determining locations for field measurements and high-resolution computational
model grids.

For surface breakers the ratio of the wave amplitude to the local breaking depth
proves to be a deterministic parameter in modelling the breaking location (Dean &
Dalrymple 1991). Similarly, Helfrich (1992) found that for internal waves, the ratio
of the wave amplitude to the local undisturbed lower layer depth (h2b) characterizes
the breaking location. The tendency for a/h2b to increase as λ/Li decreases was
also found to be valid for steeper slopes (figure 18), supporting the observation that
larger waves tend to propagate into slightly shallower water (relative to their initial
amplitude) before breaking (Helfrich 1992). The results from the present study agree
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Figure 18. A breaking location criterion: ratio of initial wave amplitude over undisturbed
lower layer thickness at breaking location (a/h2b) versus λ/Li , where λ is a measure of the
offshore wave horizontal length according to the KdV equation. The dashed line is given by
the equation proposed by Boegman et al. (2005) and the solid line is given by our proposed
equation (5.1).

qualitatively with the results given by Helfrich (1992), and we propose

a

h2b

=
0.14

(λ/Li)0.28
+ 0.13 (5.1)

to predict the breaking location of ISWs over sloping boundaries. Figure 18 shows that
the more intense breaking events (collapsing and plunging) occur where a/h2b > 0.4,
consistent with Helfrich (1992). This is also consistent with field observations of
Moum et al. (2003), where they detected non-breaking ISWs with a ∼ 20 m shoaling
over Oregon’s shelf where h2b ∼ 86 m (a/h2b = 0.23 < 0.4). As is expected from the KdV
theory, the location of the polarity change at the turning point also plays an important
role in determining the breaker type relative to the breaking location. Energetic wave-
breaking events (collapsing and plunging) tend to occur mostly offshore of the
turning point, which is in agreement with laboratory observations (Boegman et al.
2005). Large S will result in small Li , leading to rapid plunging or collapsing prior to
the wave reaching the turning point. Fission occurs via the gradual polarity change
through the turning point which is allowed to proceed for small S and tends to occur
mostly onshore of the turning point. For a given slope the more nonlinear wave
(steeper wave) tends to break further offshore of the turning point (figure 19). For
the case of fission, the breaking point is defined as the location where the first wave
of elevation emerges.

5.3. Energy reflection

Another important parameter in studying the breaking of ISWs upon sloping
topography is the reflection coefficient (R = Er/Ei), where Ei and Er are incident
and reflected wave energies, respectively. The proportion of incident wave energy lost
to mixing and dissipation is given by 1 − R. This is important to close the energy
budget and determine the fate of observed shoreward-propagating internal waves.

Helfrich (1992) showed that R increases with λ/Li . Michallet & Ivey (1999) modelled
R in terms of the ratio of the wavelength (Lw) to the slope horizontal length (Ls).
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Figure 19. The ratio of the breaking point location (Xb) over turning point location (Xt )
versus boundary slope. Here Xb and Xt denote horizontal distances from the toe of the slope
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corresponds to the less nonlinear wave (smaller wave front slope).

Boegman et al. (2005) generalized these results to the field scale by modelling R

in terms of the internal Iribarren number. Bourgault & Kelley (2007) subsequently
addressed the potential impacts of sidewall friction in contaminating the laboratory
data of Helfrich (1992) and Michallet & Ivey (1999).

Comparisons between laboratory observations and numerical studies show R to
be well modelled in two-dimensional simulations that do not fully resolve the three-
dimensional turbulence occurring during wave breaking (Bourgault & Kelley 2007;
Lamb & Nguyen 2009). We argue that this is because the reflected energy is determined
during the initial two-dimensional wave/slope interaction occurring at a large scale
(Bourgault & Kelley 2007). The secondary three-dimensional instability (Fringer &
Street 2003) that leads to turbulent dissipation ε and irreversible buoyancy flux b is not
modelled. Two-dimensional simulations overestimate b and underestimate ε relative
to the three-dimensional case (Fringer & Street 2003; Lamb et al. 2005). Given that
R = Er/Ei = (Ei − b − ε)/Ei , these effects offset and the total irreversible energy loss
(b + ε) is captured (hence R is correct), but the mixing efficiency Rf = b/(b + ε) will
be incorrect.

We follow the methods of Lamb (2007; (31) therein) and directly calculate the
incident and reflected wave energy fluxes through a plane at the toe of the slope.
The domain is sufficiently long that this prevents contamination of the energetics
calculations from secondary breaking events (Michallet & Ivey 1999). The internal
Iribarren number, which incorporates boundary and wave slope in a fractional
formula (see (1.1)), was used to model the reflection coefficient (figure 20). There is no
reflected wave associated with the fission mechanism and R → 0 as S → 0 (all incident
energy is eventually lost to viscous dissipation with minimal mixing). As expected,
most of the wave energy is reflected off the slope in case of surging breakers.

The results agree with the parameterization proposed by Bourgault & Kelley (2007),
with the exception of collapsing breakers as discussed above. There is qualitative
agreement between our results and the data from Michallet & Ivey (1999), except
their data have systematically lower R values. This may be due to viscous damping
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Figure 20. Reflection coefficient (R) versus internal Irribarren number (ξin). Filled symbols
show the modified reflection coefficient values at breaking point (Rb). The dotted line represents
the equation R = 1 − exp(−ξin/0.78) proposed by Bourgault & Kelley (2007) and the solid
curve is our proposed equation (5.2) for Rb .

along the side walls of their flume causing energy loss and reduced R (Bourgault &
Kelley 2007).

In all previous studies and so far in this study, R was measured at the beginning
of the slope, meaning that viscous losses occurring prior to wave breaking for the
incident wave and after wave breaking for the reflected wave were neglected. This
will cause R to systematically decrease as the bottom slope decreases. Helfrich (1992)
performed his experiments upon mild slopes (0.03 <S < 0.067) which most probably
caused his R values to be well below those of other studies (Bourgault & Kelley
2007; their figure 6). This indeed occurs for collapsing breakers in our simulations
(figure 20).

In a more comprehensive approach we calculated viscous losses during incident
wave movement from the beginning of the slope to the breaking point (�Ei) as
well as during reflected wave movement from the breaking point to the toe of the
slope (�Er ). The dissipation rate was calculated following Lamb & Nguyen (2009;
(12) therein). We found that an ISW can lose up to 30 % of its energy via viscous
damping before breaking and up to 25 % of the reflected wave energy could be lost
while travelling towards the toe of the slope. On the basis of the revised calculations
we introduce a breaking point reflection coefficient Rb =(Er +�Er )/(Ei −�Ei) which
represents the actual portion of the wave energy lost to mixing and dissipation via
breaking (1 − Rb). Figure 20, where R and Rb are plotted as functions of the internal
Iribarren number, shows that Rb can be up to 2R, particularly for small Iribarren
numbers for which the slope is small and the slope length is long. We propose a
function (5.2) with R2 = 0.94 which is a modified version of the equation proposed
by Bourgault & Kelley (2007) to parameterize Rb versus ξin

Rb = 1 − e−ξin/0.65. (5.2)



Breaking of shoaling internal solitary waves 313

0
–0.1
–0.2
–0.3
–0.4
–0.5
–0.6
–0.7

0
–0.1
–0.2
–0.3
–0.4
–0.5
–0.6
–0.7

0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7 0.3

x*

z*

0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

50

40

30

20

10

0

V
or

ti
ci

ty
 (

s–1
)

–10

–20

–30

–40

–50

(a1) (a2) (a3) (a4)

(b4)(b3)(b2)(b1)

Figure 21. Successive images of vorticity (shading) overlain with isopycnals (solid lines).
(a1–a4) Results from simulation 9 (Rew = 2.67 × 103) and (b1–b4) results from simulation 9b
(Rew = 8.43 × 104) which is performed using 10 times larger scales compared to simulation
9. Vortex shedding and global instability are obvious in the high-Reynolds-number case.
Horizontal coordinate is scaled by horizontal length of the slope (x∗ = x/Ls) while vertical
coordinate is scaled by total depth (z∗ = z/H ).

5.4. Boundary-layer separation and effects of Reynolds number change

Boundary-layer separation is the controlling process leading to collapsing ISW
breakers; thus it is instructive to study this phenomenon in more detail. Carr &
Davies (2006) found that over a flat bottom, the adverse pressure gradient beneath
the wave strengthens as the wave amplitude increases, resulting in a faster growing
separation bubble beneath a more nonlinear ISW. Diamesis & Redekopp (2006) found
that the Reynolds number Re =Hc0/ν provides a limiting criterion for the evolution
of separated boundary layer into a global instability where the shed vortices are
ejected away from the bed. Stastna & Lamb (2008) showed that for ISWs of elevation
there should be a background current opposite to the wave propagation direction
for global instability to occur and associated coherent structures can re-suspend bed
sediments up to 25 % of the water column depth.

In this study, we investigated the relationship between wave slope and boundary-
layer separation for closed slopes at laboratory scale. Here, we extend our results
to include Reynolds number effects. To include the contribution of wave amplitude,
Boegman & Ivey (2009) introduced a wave Reynolds number Rew = ac0/ν where
typically, Rew ∼ 103 in the laboratory, Rew ∼ 106 in lakes and Rew ∼ 107 in oceans.
We investigated the effects of larger Rew by increasing the length scales in Rew in
simulation 9 by a factor of 10 such that Rew increased from 2.67 × 103 to 8.43 × 104

(simulation 9b). The characteristics of the boundary-layer separation are shown with
the vorticity fields (figure 21). Horizontal and vertical grid numbers were made four
times larger for this simulation (600 vertical grid lines). For the large Rew simulation,
boundary layer instability occurs with multiple shed vortices that are smaller relative
to the wave amplitude and have slower growth rates relative to the small Rew case.
This results from the boundary layer being thinner relative to the total depth for
the large Rew case (hence smaller shed vortices). The small vortex diameter and
slow growth minimizes the influence of the flow separation on wave breaking with
the result that steepening of the rear face of the wave is unencumbered and able
to initiate plunging (figure 21.b2). Conversely, for small Rew , the large and rapidly
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growing bubble causes the wave to collapse prior to possible plunging. Clearly, the
Reynolds number influences the breaking mechanism.

The large Rew case is similar to the global instability phenomenon typically observed
beneath large ISWs progressing over a flat bottom (e.g. Diamesis & Redekopp 2006).
When the cluster of detached vortices reaches the rear face of the wave it becomes
unstable (figure 21.b3) and a local portion of the wave collapses. The cluster of small
vortices thus acts in a manner similar to the large vortices occurring at low Rew .
Interestingly, shed vortices reach the wave front at the same location along the slope
and so the breaking location does not change with Rew . Increasing Rew causes an
increase in R from 0.23 to 0.37. Lamb & Nguyen (2009) found an increase in R with
Reynolds number for a wider range of Iribarren numbers. It has been argued above
that R is determined by the primary two-dimensional instability and distance the
wave travels along the slope prior to breaking. The increase of R with Rew is likely
due to reduced viscous dissipation, relative to the incident wave energy, associated
with relatively smaller boundary-layer separation bubble in the large Rew case.

5.5. Implications for field-scale modelling

Having modelled the instability processes leading to ISW breaking over sloping
boundaries at laboratory scales (Rew ∼ 103), we discuss the implications of our results
on large-scale modelling (Rew ∼ 106–107). As described above, it is necessary to resolve
the bottom boundary layer in order to capture boundary-layer instability in simulating
ISW breaking. This demands a fine grid resolution close to the bottom boundary. For
example, in simulation 9 the non-dimensional boundary-layer thickness (δ/H ) under
the offshore wave trough was 0.028 and was resolved with six vertical grid lines.
By increasing Rew (increasing length scales in simulation 9b), the non-dimensional
boundary-layer thickness became 0.006 and was resolved with five vertical grid lines.
A benefit of σ -coordinates is that vertical resolution is finer in the shallower region
where breaking occurs. For the high Reynolds simulation there were 44 vertical and
12 horizontal grid lines inside the smallest vortex. Similar results were obtained when
the resolution was doubled. The resolution required to resolve the near-bed velocity
gradients at Rew ∼ 106–107 at field scale is thus computationally prohibitive. To model
a ∼3 m amplitude wave in a 15 m water column (i.e. simulation 9 at 100 times larger
physical scale with Rew = 2.67 × 106), we would need 2400 grid lines in the vertical
direction (16 times more compared to simulation 9). This simulation would require
∼300 GB memory to capture the shoaling process until the wave breaks.

Lorke (2007) presented horizontal velocity profiles at the bottom boundary of
Upper Lake Constance at the depth of 11 m (his figure 8) where the boundary-layer
thickness is ∼0.11 m (δ/H =0.01). This value is close to the 0.1–0.15 m boundary-layer
thickness observed in central Lake Erie (Boegman, unpublished data). Many field-
scale numerical simulations of internal wave shoaling do not have sufficient vertical
grid resolution to resolve these bottom boundary layers. For example, �z = 0.53 m
(Lamb 2002), �z = 3.3 m (Legg & Adcroft 2003), �z = 0.5 m (Bourgault & Kelley
2003) and �z = 6 m (Vlasenko & Staschuk 2007). These values are larger than the
boundary-layer thickness and thus these simulations (some of which did not use a no-
slip bottom boundary condition and hence were also missing some essential physics)
were not capable of capturing the flow separation processes central to regulation of
the breaking mechanism.

The two-dimensional field-scale simulations by Vlasenko & Hutter (2002) are similar
in configuration to the present study, but at larger Rew . They used a no-slip bottom
boundary condition with a vertical grid resolution of 0.5 m in modelling shoaling of
a large ISW with 84 m amplitude where the total depth was 250 m. They simulated
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plunging breakers and observed the anvil structure associated with a Rayleigh–Taylor
instability (their figure 6); however, flow separation was not simulated to occur as is
expected in a plunging breaker. This is likely due to their coarse grid resolution which
was unable to resolve boundary-layer separation. As an alternative, vertically varying
resolution has been effectively applied to resolve bottom boundary layer beneath ISWs
(Diamesis & Redekopp 2006; Stastna & Lamb 2008) particularly for Rew ∼ 104.

Background currents and topographic roughness effects have not been considered
in this study. These will occur in the field and will modify the breaking processes
relative to our findings. Currents and roughness can readily be included in high-
resolution σ -coordinate models (Stastna & Lamb 2008) and future work in this area
is recommended.

6. Conclusions
We have extended the work of previous studies simulating shoaling processes of

internal solitary waves upon sloping topography. Four breaking processes occurred:
collapsing, plunging, surging and fission; and the predominance of a particular process
was a function of the relative development time scales. The internal Iribarren number
(boundary slope/square root of wave slope) was found to be unable to categorize
the breaking mechanisms, which were separable in wave slope versus boundary slope
space. The breaking location was modelled in agreement with Helfrich (1992) over
an extended parameter range and was independent of the Reynolds number (Rew).
The reflection coefficient at the beginning of the slope (R) was in agreement with the
Bourgault & Kelley (2007) parameterization but increased by ∼10 % when Rew was
increased by a factor of 32. On the other hand, the breaking point reflection coefficient
(Rb) could be up to 2R for mild slopes. The breaking mechanism was also Reynolds
number dependent with a global instability occurring for the larger Rew case.

While these conclusions suggest that laboratory-scale simulations do not capture
large Rew dynamics and hence that field-scale simulations are required, such
simulations must be done with caution. Flow separation along the bottom boundary
during breaking was found to be a mechanism controlling process and consequently
the vertical grid point resolution must be sufficient to resolve the no-slip bottom
boundary condition. Moreover, to correctly capture the turbulent dynamics and
mixing efficiency, Fringer & Street (2003, their figure 17) have shown that transverse
three-dimensional secondary instabilities must also be resolved, although large eddy
scale simulations would probably be sufficient. Given the associated computational
challenges, a combined approach of investigation using multiple scales and dimensions
remains the appropriate path forward.
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